Answer Key

Lesson 2

Task 1:		
main.py	E	significant $:$
1 temperature_variability = "significant"		
print(temperature_variability)	-	
Task 2:		
main.py		E
1 average_increase $=2$		0.07 0.18 0.155
2 increase_before_1981 $=0.07$		0.25
3 increase_after_1981 = 0.18		:
4 print(average_increase)		
5 print(increase_before_1981)		
6 print(increase_after_1981)		
7 print(increase_before_1981 + increase_after_1981)		
Task 3:		
main.py	E	<class 'str'>
temperature_variability = "significant"		<class 'int'>
2 average_increase = 2		<class 'float'>
3 increase_before_1981 = 0.07		<class 'bool'>
4 increase_after_1981 = 0.18		<class 'bool'>
5 climate_warming $=$ True		
6 climate_cooling = False		
7 print(type(temperature_variability))		
8 print(type(average_increase))		
9 print(type(increase_before_1981))		
10 print(type(increase_after_1981))		
11 print(type(climate_warming))		
12 print(type(climate_cooling))		

Lesson 3:

Lesson 4

Task 1:

*Notes: no quotation marks are needed for integers or floats

Task 2:

```
main.py
1 my_dict = {'anthropogenic GHG':'caused by humans', 'coal':'fossil fuel',
    'CO2 in 2019': 409.8,}
2 print(my_dict['CO2 in 2019'])
3 print(type(my_dict['CO2 in 2019']))
```


Lesson 5

Task 3:

```
main.py
    thawing_1 = 17
    thawing_2 = 92
    thawing_3 = 1500
    if thawing_2 % 2==0:
    print("permafrost")
    elif thawing_2 % 5==0:
    print("is thawing")
    else:
    print(thawing_2)
main.py
    thawing_1 = 17
    thawing_2 = 92
    thawing_3 = 1500
    if thawing_3 % 2==0:
        print("permafrost")
    elif thawing_3 % 5==0:
        print("is thawing")
    else:
    print(thawing_3)
```

*The integer 1500 is both divisible by 2 and 5 . However, since the condition is met by the if statement, then it will only print "permafrost" and not "is thawing".

Task 4:
main.py
thawing_1 $=17$
thawing_2 $=92$
thawing_3 $=1500$
if (thawing_2 \% 2==0) and (thawing_2 \% 5==0):
print("permafrost is thawing")
elif thawing_2 \% 2==0:
print("permafrost")
elif thawing_2 \% 5==0:
print("is thawing")
else:
print(thawing_2)

Task 4 continued:

main.p		```permafrost is thawing # [```
1 t	thawing_1 = 17	
2	thawing_2 = 92	
3	thawing_3 = 1500	
4	if (thawing_3 \% 2==0) and (thawing_3 \% 5==0):	
5	print("permafrost is thawing")	
6	elif thawing_3 \% 2==0:	
7	print("permafrost")	
8	elif thawing_3 \% 5==0:	
9	print("is thawing")	
10	else:	
11	print(thawing_3)	

As this example demonstrates, the combination of the two conditions using and, as well as parentheses (), is used to create the if statement. If a variable is not divisible by both 2 and 5, then it can be evaluated by the elif statements, and finally by the else statement.

Task 5:

In order to print numbers incrementally, another statement that states that the variable is equal to the variable +1 is added. As this example illustrates, the while loop is executed until the condition (permafrost is less than or equal to 1000) is false.
Task 6:
fTemp = [265, 255, 245, 235, 225, 215]
fTemp = [265, 255, 245, 235, 225, 215]
cTemp = []
cTemp = []
for x in fTemp:
for x in fTemp:
cTemp.append((x-32)*5/9)
cTemp.append((x-32)*5/9)
print(cTemp)
print(cTemp)
[129.4444444444446, 123.88888888888889, 118.33333333333333, 112.7777%
[129.4444444444446, 123.88888888888889, 118.33333333333333, 112.7777%

Lesson 6

Task 1:

```
main.py
def permafrost_thawing(years_thawing):
    if (years_thawing % 2==0) and (years_thawing % 5==0):
        return "permafrost is thawing"
        elif years_thawing % 2:
        return "permafrost"
        elif years_thawing % 5:
            return "is thawing"
        else:
            return years_thawing
    thawing_1 = permafrost_thawing(17)
    thawing_2 = permafrost_thawing(92)
    thawing_3 = permafrost_thawing(1500)
    print(thawing_1, thawing_2)
```


Task 2:

```
main.py }
    def permafrost_thawing(years_thawing):
        if (years_thawing % 2==0) and (years_thawing % 5==0):
            return "permafrost is thawing"
        elif years_thawing % 2:
            return "permafrost"
        elif years_thawing % 5:
            return "is thawing"
        else:
            return years_thawing
        thawing_1 = permafrost_thawing(17)
        thawing_2 = permafrost_thawing(92)
        thawing_3 = permafrost_thawing(1500)
        print(thawing_1 == thawing_2)
```

```
False
```


Task 3:

Lesson 7

```
Task 1:
    main.py
1b
    class Turtle:
        def __init__ (self, species, location, conservation_status):
        self.species = species
        self.location = location
        self.conservation_status = conservation_status
    pacific_green_sea_turtle = Turtle("Pacific Green Sea", "Raine Island",
    "Endangered")
    nubian_flapshell_turtle = Turtle("Nubian flapshell", "West Africa",
    "Critically endangered")
26
2 7 \text { print(nubian_flapshell_turtle.location)}
```

Console

Task 2:

```
class Greenhouse_gases:
    def __init__ (self, chemical_formula, source):
        self.chemical_formula = chemical_formula
        self.source = source
carbon_dioxide = Greenhouse_gases("CO2", "fossil fuels")
methane = Greenhouse_gases("CH4", "livestock")
nitrogen_dioxide = Greenhouse_gases("NO2", "industrial processes")
print(carbon_dioxide.source)
print(methane.source)
print(nitrogen_dioxide.source)
```

fossil fuels
livestock
industrial processes
ind

Lesson 8

Task 1:

import numpy as np
import matplotlib. pyplot as plt
temp $=$ np.array $([265,255,245,235$, 225, 215])
albedo $=$ np.array $([0.15,0.25,0.35$, $0.45,0.55,0.65])$
plt.plot(temp, albedo, marker='o', linestyle = 'dashed', color = "blue")
plt.xlabel("Temperature (F)")
plt.ylabel("Albedo")
plt.title("The Albedo Effect")
plt.show()

Task 2:

```
import numpy as np
temp = np.array([265, 255, 245, 235,
225, 215])
albedo = np.array([0.15, 0.25, 0.35,
    0.45, 0.55, 0.65])
def slope(x1, x2, y1, y2):
    m = (y2-y1)/(x2-x1)
    return (f" The slope is {m}")
print(slope(temp[0], temp[5], albedo
[0],albedo[5]))
```

The slope is $\mathbf{- 0 . 0 1}$

* \square

Python - Culminating Task (Answers)

```
import numpy as np
import matplotlib.pyplot as plt
years = np.array([1971, 1973, 1975, 1977, 1979, 1981, 1983, 1985, 1987, 1989, 1991, 1993, 1995, 1997,
1999, 2001, 2003, 2005, 2007, 2009, 2011])
land_area_list_US = np.array([47.3088648, 47.0795811, 46.9658127, 46.9847013, 46.7479932, 46.7479932,
47.1013084, 47.1013084, 46.6153362, 46.6153362, 46.6153362, 46.1786054, 45.8719112, 45.2982653,
45.189301, 45.2900702, 45.178849, 44.9451643, 45.0623443, 44.8170837, 44.2386282])
land_area_list_China = np.array([40.39624, 41.4858999, 42.682076, 43.9485527, 45.0765585, 46.1117887,
48.244135, 50.7386361, 51.9549437, 53.2032061, 54.4701089, 55.1991053, 55.6902039, 55.7435214,
55.7222181, 55.3795407, 54.9767062, 55.1151813, 54.8100187, 54.8084173, 54.8084173])
"""The Graph"""
plt.plot(years, land_area_list_US, color = "red")
plt.plot(years, land_area_list_China, color = "blue")
plt.xlabel("Time (year)")
plt.ylabel("% land use for agriculture")
plt.title("Agricultural Land Use")
"""Function to calculate avg for each country"""
def calculateAVG(num):
    for x in num:
        return sum(num) // len(num)
    """User Input & If statements"""
    x = input("Which country uses more % land for agriculture - US or China?: ")
    y = calculateAVG(land_area_list_China)
    z = calculateAVG(land_area_list_US)
    if x in ["China", "china"]:
        print(f" You are correct! The % land used for agriculture in China is {y}
    percent compared to {z} percent in the US.")
    i = input("Would you like to see the data from the past 40 years?: ")
    if i in ["Yes", "yes", "y", "Sure", "sure", "ok", "OK"]:
        plt.show()
    else:
        print("Thank you for your time!")
    elif x in ["US", "us", "United States", "united states", "USA", "usa"]:
    print(f" Actually, China uses more % land for agritculture: {y} compared to
    {z} percent in the United States.")
    i = input("Would you like to see the data from the past 40 years?: ")
    if i in ["Yes", "yes", "y", "Sure", "sure", "ok", "OK"]:
        plt.show()
    else:
        print("Thank you for your time!")
    else:
    print("You didn't seem to select one of the two countries. Please try
    again.")
    x = input("Which country uses more % land for agriculture - US or China?")
```


