
Lesson 8 - Numerical Python & Matplotlib
Manipulating and visualizing data

The Albedo Effect

Different surfaces on the Earth reflect or absorb the sun’s radiation in different
proportions - what is referred to as a surface’s albedo. As demonstrated by the data
below, the smaller the albedo, the lower the correlating temperatures. For example,
forest has an albedo of 10%. Since it absorbs more of the sun’s radiation than fresh
snow (an albedo of 85%) it would be much warmer.

Albedo has a significant impact on the warming effect of the Earth. For example, sea
ice located in the Arctic has a high albedo as it reflects approximately 80% (or 0.8 as
expressed as a ratio) of sunlight back into space. If sea ice is melting, and the darker
surface of the ocean absorbs more light than was reflected by the ice (approx.
8-10%), then this would further cause more ice to melt. This warming effect, in
which the effect further increases the original cause, is an example of a positive
feedback loop.

To learn more about the albedo effect, you can watch this NASA video, or use this NatGeo activity.

Source for albedo data: An online course taught by Dr. David Archer called, “Global Warming II: Create Your Own Models in
Python.”

Image source: Bio1110

https://www.nationalgeographic.org/encyclopedia/arctic/
https://www.nationalgeographic.org/encyclopedia/arctic/
https://www.youtube.com/watch?v=sCxIqgZA7ag&feature=emb_title
https://www.nationalgeographic.org/activity/feedbacks-ice-and-clouds/
https://bio1110.nicerweb.com/Locked/media/ch26/albedo.html

Many different libraries were used to process data for major scientific breakthroughs,
including the first image of a black hole, which used a combination of NumPy,
Matplotlib, as well as other libraries. NumPy is a library that contains
multi-dimensional arrays (rather than 1D lists), as well as arithmetic functions to
operate on these arrays. As demonstrated below, arrays are a different data type than
a list (part 1), and since they use less memory, they are much faster to execute.

Part 1: Import the NumPy library and use the array() function

1. Import the library as np so when referring to it later you can just type “np”.
import numpy as np

2. Create two lists and pass them through your NumPy array by using a dot to
access np (similarly to how a dot was used to access an object) and the array()
function.
a = np.array([1,3,5])
b = np.array([1,2,3])

As you can see, if you tried to multiple these two lists without passing them through a
NumPy array, you would not be able to multiple them (an error message would be
generated:

However, once passing the lists through the NumPy array, it is possible to do execute this
function:

https://numpy.org/case-studies/blackhole-image/

NumPy arrays can also have multiple dimensions. The examples above are both 1D
arrays. A 2D array would have two arrays, a 3D array would have three arrays, and so
on.

3. Create a 2D array with the arrays [1,2,3] and [4,5,6].
c = np.array([1,2,3], [4,5,6])

4. Check the number of dimensions by using a dot to access the variable, followed
by ndim for both the variables a and c.
print(a.ndim)
print(c.ndim)

5. Classify the variable b using type().
print(type(b))

Example:

NumPy arrays also have a shape - the number of dimensions, and the number of
elements. The shape attribute can be determined by placing a dot after the variable
and the word “shape”.

6. Print the shape for variables b and c.

Example:

Part 2: Introduction to Matplotlib
Matplotlib is a graphing library that allows the development of plots and interactive
figures, with many customizable features. To illustrate how to use matplotlib, we will
be using data collected from the Mauna Loa Observatory in Hawaii:

Year Atmospheric CO2 concentrations (ppm)

2017 406.36

2018 408.15

2019 411.03

2020 413.61

2021 415.52

1. Import both numpy (as np) and matplotlib.pyplot (as plt).
import numpy as np
import matplotlib.pyplot as plt

2. Create the variables “xpoints” and “ypoints” and pass the years and the CO2

concentrations as NumPy arrays.
xpoints = np.array([2017, 2018, 2019, 2020, 2021])
ypoints = np.array([406.36, 408.15, 411.03, 413.61, 415.52])

https://climate.nasa.gov/vital-signs/carbon-dioxide/

3. Plot the points by using the plot() function and accessing the library with a dot.
plt.plot(xpoints, ypoints)

4. Show the plot by using the show() function and accessing the library with a dot.
plt.show()

Example:

There are a few ways to customize the graph. For example, using ‘o’ prints just the
points of the plot and using marker= ‘o’ prints both the points and the line.

Examples:

5. Create an x-axis and y-axis label by accessing the library with a dot, followed
by xlabel(), ylabel(), and title()

plt.xlabel("Time (year)")
plt.ylabel("CO2 (ppm)")
plt.title("CO2 atmospheric concentrations at the Mauna Loa Observatory")

Example:

*Don’t forget to place plt.show() at the very end to show the graph with all the new changes.

✅Task 1: Create a graph for the temperature and albedo data at the beginning of
the chapter. Make the line blue and dashed, and include the points as well. Label
the axes and include a title. For more information on how to customize the data
visualization using matplotlib, visit this website.

✅Task 2: Create a function that calculates the slope using the first and last points
and prints a statement that states the calculated slope. If you want to learn how to
embed variables into a string, visit this website to learn about f-String literals.

https://www.w3schools.com/python/matplotlib_intro.asp
https://realpython.com/python-f-strings/

